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Abstract—This paper presents an algorithm for fundamental
frequency detection on polyphonic acoustic musical signals,
based on a new ‘raking’ method over the frequency-domain
spectra. The algorithm is evaluated as a classifier, and boasts a
good accuracy (83.20%) compared to other such methods, as well
as the ability to function effectively in real-time, with a running-
speed below 140ms per window evaluated. This proves to be
real-time for the use-case, as the latency between an auditory
stimulus and its perception by a person has been shown to
be longer than this. The algorithm itself runs in linear-time,
but is thus slowed by the O(nlog(n)) Fast Fourier Transform
during preprocessing. Though the algorithm fails to account for
certain edge-cases with overlapping harmonics as well as certain
instruments, future work and improvements are also presented,
paving the way for further research.

Index Terms—Signal Processing, Acoustics, Algorithms, Music
Information Retrieval

I. INTRODUCTION & RELATED WORK

ANALYSIS of musical signals is an increasingly growing
area of study that is host to a range of challenging

problems. One such problem is pitch detection - the process
of determining the pitch of a note (or each note in a set of
notes).

For real-time pitch detection, the following are requirements
[3]:

• Ability to function in real-time
• Minimal latency
• Accuracy in the presence of noise
• Sensitivity to the musical requirements of the perfor-

mance

should be less than the implicit latency between the start of
the stimulus and the point at which the stimulus is registered
by the brain. The mean simple reaction time for auditory
stimuli has experimentally been shown to be between 140ms
and 284ms [12], giving a window in which the processing
of the signal can take place - i.e. the ∼140ms prior to the
registering of the stimulus.

Algorithms which tolerate noisy audio input are particuarly
desirable [3]. There are many factors that could result in
a “noisy” recording - the aforementioned harmonics of the
acoustic instruments, imperfect microphone recordings, back-
ground noise and more.

A variety of methods for polyphonic pitch detection have
been proposed, but it still remains an unsolved problem in
the field of Music Information Retrieval (MIR) [1]. Further,
there is both a variety of cutting edge ([1], [7], [13], etc.), and
historical approaches ([10], [9], [11], [2] etc.) that attempt to
tackle the problem.

II. PROPOSED APPROACH

The proposed approach is a novel algorithm that ‘rakes’
through the frequency-domain representation of the signal,
extracting fundamental frequencies iteratively until there are
no further frequencies to extract.

Figure 1. Diagram showing an overview of the proposed approach.

A. Preprocessing

The preprocessing for the proposed approach is minimal.
Initially, the time-domain signal is transformed to the fre-
quency domain by means of a Fast Fourier Transform. Further,
a ‘band-pass’ filter is applied to the signal in the frequency

These requirements are born of the need to avoid initial
pitch-identification e rrors. W hilst i n p re-recorded m usic, er-
rors can be rectified w ith f urther p rocessing o f t he recording
(multiple passes of analysis etc.), there is but a single window
for analysis in real-time applications.

Regarding the ability to function in real-time, though this
seems obvious or trivial as a requirement, it remains incredibly
important to consider the computational complexity of the
approach such that the calculated pitches at least appear to
be instantaneous for the user.

Importantly there is a definitive l apse b etween t he instant
in which a note is perceived by a person and the point
at which the person identifies t he p itch ( or e ven registers
the auditory stimulus). In general, the latency between the
auditory stimulus and the display of the calculated pitch
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domain, cutting off all frequencies below 60Hz or above
16000Hz, discarding them as noise as the likelihood of such
an extreme frequency originating from an acoustic musical
instrument is incredibly low.

Though simple, this preprocessing effectively reduces the
number of possible fundamentals that the algorithm must
consider, increasing the speed at which it can compute which
fundamentals were perceived. Moreover, the upper and lower
bound of the band-pass filter could be altered to be more op-
timal based on additional knowledge such as the instruments
that are playing. For example, if the instrument perceived
was a cello, the upper bound of the filter could be brought
significantly lower as the cello is incapable of playing notes
even close to that frequency.

B. Selection Loop

Algorithm 1 Selection Loop
Input: F , Fk, α, and notesReduce
Output: R
R ←− ∅
while Fk �= [ ] do
C ←− Fk[0]
Fk \ C
if F(C) < αμ then

continue
end if
R∪ C
F ←− notesReduce(Fk, F)

end while

Inputs:
• F:c→Double - a mapping between the pitch chromas

present in the signal and their respective total amplitudes
• Fk:[c], - the list of pitch chromas present, ordered by

corresponding frequency (increasing)
• α:Double - an expression for the minimum amplitude

cutoff (i.e. the highest amplitude at which candidates
should be discarded)

• notesReduce:[c]→(c→Double)→(c→Double) - a function
that takes both Fk, and F and returns a new F such that
the total amplitudes of notes related to the fundamental
are appropriately reduced.

Firstly, R is assigned the empty set, ∅, and acts as the return
value of the algorithm - i.e. the perceived pitches. Then the
algorithm loops until Fk (the list of keys of the mapping F)
is empty. This is to avoid mutation of F itself whilst iterating.

Due to the lack of harmonic ‘undertones’ in acoustic
musical signals, the leftmost encountered harmonic (i.e. the
harmonic at index 0 in Fk) can be considered to always be
the next candidate as a potential fundamental of the signal.
Hence, on lines 3 and 4, the next candidate chroma is popped
from Fk, and assigned to C. Depending on whether or not this
value is deemed to be a fundamental (further in the algorithm),
it will either be added to R or discarded as appropriate. It is

imperative, however, to remove it from Fk at this point as it
should never be considered more than once. This also ensures
that Fk will always shrink and eventually the algorithm will
terminate.

If the amplitude of the chroma Fk in F is below some
threshold amplitude, αμ, which is some scalar, α, of the
mean amplitude of the remaining chromas in Fk, μ, it is
discarded. A good value for α is experimentally determined
in Section IV.

Otherwise, if the amplitude of the current chroma falls
above the threshold, it is added to the perceived pitches, R,
and the amplitudes of all notes in F are reduced according to
the ‘Notes Reduce’ function. The algorithm then loops again
to check the next candidate.

C. ‘Notes Reduce’ Function

Algorithm 2 ‘Notes Reduce’ Function
Input: F , Fk, harmonicsFromChroma, spline, cToF ,

and V
Output: F
curr ←− ∞
points ←− [ ]
fundamental ←− Fk[0]
H ←− harmonicsFromChroma(fundamental)
for Fi ∈ Fk do

if F(Fi) < curr ∧ Fi ∈ H then
points ∪ Fi

curr ←− F(Fi)
end if

end for
splineX ←− points ∪ V
splineY ←− [F(x)|x ∈ points] ∪ 0
splineF ←− spline(splineX, splineY )
for h ∈ H do

if h �∈ Fk then
continue

end if
F [h] ←− F [h]− splineF (cToF (h))

end for
return F

Inputs:
• F:c→Double - a mapping between the pitch chromas

present in the signal and their respective total amplitudes
• Fk:[c] - the list of pitch chromas present, ordered by

corresponding frequency (increasing)
• harmonicsFromChroma:chroma→[chroma] - a function

that takes a chroma and returns its harmonics
• spline:[Double]→[Double]→(Double→Double) - A function

that takes two equal-length lists of points and returns
a corresponding spline function

• cToF:c→Double - A mapping from chromas to their
corresponding frequency

• V:Double - The upper limit of sampled frequency (eg.
∼20000.0Hz for human hearing)
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Figure 2. Example spline giving two fundamentals with overlapping har-
monics, f0 and g0

The ‘Notes Reduce’ function takes the remaining list of
uncategorised chromas, Fk, and the mapping F , and uses
these to reduce the amplitudes of the harmonics of the
fundamental, Fk[0], returning a new mapping F with updated
amplitudes.

On lines 1 to 10 inclusive, points is assigned the list
containing all of the harmonics of Fk[0] that have strictly
monotonically decreasing amplitudes. This is based off of the
assumption that the (n+1)th harmonic of a given fundamental
will generally have less energy than the nth harmonic. This
allows the algorithm to account for overlapping harmonics,
and more importantly, the case in which the harmonic of one
note is the fundamental of another - for example, C4 and G5.

The monotonically decreasing points are used on lines 11 to
13 inclusive to fit a spline along the tips of the corresponding
peaks, with the spline tapering off from the last point to the
point (V , 0) - i.e. the limit of human hearing. A spline with
degree 1 (i.e. a spline consisting of linear sections) is both
effective and incredibly quick to calculate in this case.

Finally on lines 14 to 20 inclusive, the amplitude of all
harmonics of the fundamental are reduced (NB: not just the
monotonically decreasing ones) by the amplitude of the spline
at that point. The new mapping is then returned and the
selection loop continues.

III. EVALUATION METHOD

The problem of polyphonic pitch detection is in essence
a classification problem. Given a set of notes, they need to
be correctly classified or discarded, with the perfect outcome
being that of the frequencies heard, only the perceived pitches
are classified (and classified correctly), and the other fre-
quencies are discarded. For each window there are two sets,
the heard notes which are all of the frequencies that were
recorded (and above some threshold), and the perceived notes,
which are the output notes - i.e. the notes that the approach
has selected as fundamentals and classified. Moreover each
processed note heard falls into four categories,

Figure 3. Result of the reduction on the previous spectra (Figure 2)

• True Positive (TP) - A note that was in the heard notes
and both correctly retained and classified.

• False Positive (FP) - A note that was in the heard notes
and incorrectly retained (regardless of classification).

• True Negative (TN) - A note that was in the heard
notes and correctly discarded (i.e. does not appear in the
perceived notes)

• False Negative (FN) - A note that was in the heard
notes and incorrectly discarded when it should have been
retained.

Five different test cases were evaluated. For each, a prede-
termined musical phrase was recorded into a dynamic micro-
phone, and for each window the ‘heard notes’ and ‘perceived
pitches’ were recorded (NB: ‘heard notes’ is synonymous
with the input to the classifier, and ‘perceived pitches’ are
the candidates selected as fundamentals). Then, each note in
the heard notes was manually categorised as one of the four
possibilities (TP, FP, TN or FN). A weighted mean (weighted
by the total notes heard) was calculated across 3 repeats,
and a number of metrics were calculated for each repeat and
averaged across all three. The standard deviation for each
averaged metric was also calculated as an indicator for the
spread (and further, likely reliability) of the results.

Firstly the True Positive Rate (TPR), False Positive Rate
(FPR), True Negative Rate (TNR) and False Negative Rate
(FNR) were calculated. As well as this, the Precision (PR),
Recall (RE), Specificity (SP), Accuracy (A), and F-Score (F)
were determined.

Further, it proves imperative to also analyse the position
of the classifier in ROC space (that is, a plot of sensitivity
against inverse specificity) [6]. Specificity is an important
characteristic of the classifier in this case as it is important
to minimise the number of False Positives in the output as
it is preferable to lose harmonic content (i.e. due to a False
Negative) as opposed to gaining inharmonic content. This is
because the resulting notes will more accurately represent the
actual notes being played, partly due to overlapping harmonics
in the original. Consider, for example, the chord of C7 (C, E,
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Figure 4. A D Major scale from D4, ascending and descending - the first
test case

Figure 5. An F Major scale from F4, ascending and descending - the second
test case

G, B�) - it is better for a harmonically-related note to be lost
(Eg. an output of C, G, B�) than for a harmonically-unrelated
(in relation to the chord) note to be added (Eg. an output of
C, E, G, B�, D) as the harmonic structure of the chord is
maintained in the former but not the latter.

The perfect classifier lies at (0, 1) in ROC space (i.e. 100%
sensitivity and 100% specificity). In order to derive an overall
score that also takes specificity into account, the distance from
the classifier to the perfect classifier in ROC space is used.
The shorter this distance, the better the classifier is, thus an
overall score is calculated for the classifier equal to FScore

distance .
The first two test cases are based on monophonic phrases of

music. It is to be expected that the classifier will perform well
on these, but due to the presence of harmonics, it is unlikely
to be perfect. Likely errors include octave errors, where a
note is classified as the correct pitch chroma but incorrect
pitch height, and errors where aspects of the noise due to
an imperfect recording are incorrectly classified as perceived
pitches (false positive cases).

The other three cases are based on more complex, poly-
phonic phrases on a variety of instruments. These are the more
challenging tests, and thus, the performance is expected to be
much lower than that on the monophonic cases. This increase
in difficulty can be attributed both to the instruments being
used (piano, guitar, and melodica) as well as the additional
challenges that the more complex phrases present, such as
overlapping harmonics and fast transitions between notes.

The first test case is an ascending and descending D major
scale over one octave on an acoustic flute. Because of its
relatively pure sound, it would be expected for the classifier
to perform well on the flute.

This test case is essentially identical to that of test case 1,
but played on a piano as opposed to a flute. Moreover, the aim
is to ascertain that the approach is capable of performing over
a variety of instruments (and therefore harmonic patterns). It
also serves as a valuable comparison to test case 3 (polyphonic
piano), showing the difference in performance between the
monophonic and polyphonic cases.

A more complex test case, test case 3 has a number
of pitfalls and edge cases that a perfect classifier would
be able to overcome. Furthermore, the overlap in harmonic
content, particularly between the left and right hands of the
music, make it incredibly difficult to distinguish between the

Figure 6. The opening bars of Chopin’s Nocturne Lento Con Gran Espres-
sione - the third test case [8]

Figure 7. Repeated E minor triads in root position - the fourth test case

fundamentals present and their harmonics. As well as this, the
introduction of pedal is likely to cause issues with held notes
being classified or otherwise interfering with the harmonic
content.

Whilst the content of the phrases of the final two cases may
appear simple, the resulting harmonic overlap and difficult
harmonic structure of the instruments (guitar and melodica
respectively) result in a challenging test case overall. It is
interesting to compare the capability of the classifier to deal
with a variety of instruments, especially ones such as melodica
- the tone of which results in a great range of partials that are
often not harmonically related to the fundamental itself.

IV. α DETERMINATION

α is the scalar value used with the mean amplitude of
the heard notes (μ) during each pass of the loop in order
to discard harmonics under a certain amplitude. These are
regarded as noise and/or harmonics and considered irrelevant
to the remaining harmonic structure observed.

It is imperative that an optimal value of α is found in order
to obtain the best results from the classifier. Hence, a range
of α values were tested, and the best (on average) over the
five test cases was used. For each value of α to be tested, an
experiment was conducted for each of the five test cases, and
the results taken across three runs.

If the value of α is too high, the false negative rate
will increase as the classifier will begin to discard relevant
candidates. Conversely if the α value is too low, the false
positive rate will increase as the classifier will retain and
classify candidates that should have been discarded. Moreover,
an optimal value of α is essentially a compromise between
sensitivity and specificity.

The results for each test case with each value of α can be
found in Appendix A.

Figure 8. Repeated G minor chords with a tonic root - the fifth test case
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Following the experimental results, a ROC space graph was
plotted for each test case with the classifier for each value of
α present. The corresponding distances to (0, 1) were then
calculated. See Appendix A for the relevant graphs and tables.

A. Overall Scores

Table I
SCORES PER α VALUE

α Value Test 1 Test 2 Test 3 Test 4 Test 5 μ

3.00 2.68 6.62 2.05 1.50 3.12 3.19
4.00 4.20 7.64 1.38 1.51 1.52 3.25
4.25 4.56 21.26 2.25 1.53 3.63 6.64
4.50 3.49 21.71 1.48 1.24 2.08 6.00
5.00 2.70 22.71 1.86 1.12 3.06 6.29

NB: The scores shown are (F-Score ÷ Distance)

Given the overall scores for each value of α, a value of 4.25
is chosen for use as it has the highest average score (6.64).

V. EVALUATION

Table II
METRICS PER TEST CASE

PR RE SP A F

Test 1 78.09% 93.89% 83.00% 86.89% 84.78%
Test 2 100.00% 97.22% 100.00% 97.85% 98.55%
Test 3 82.46% 75.67% 77.52% 76.36% 78.85%
Test 4 86.31% 82.50% 53.33% 75.83% 83.47%
Test 5 65.08% 100.00% 64.29% 79.07% 78.47%

μ 82.39% 89.86% 75.63% 83.20% 84.82%

The above table shows the scores for each test case with a
value of α = 4.25. An average for each is taken across the
five cases.

As can be seen from the results, the classifier performed
extremely well overall on the given test cases. As the test
cases used are not the same as those that other papers have
used for evaluation however, a comparison between the raw
scores is likely to be inconsequential.

A. σ Analysis

In order to ascertain the robustness of the evaluation, it
is important to analyse the standard deviations (σ) of the
results in Appendix B. A low σ with respect to the mean
μ signifies a stable test, and conversely, a high σ with respect
to μ suggests that the test is relatively volatile or unstable (i.e.
there is significant variation in the results).

A widely-used method for determining whether a given σ
is high or low is the use of the coefficient of variation (Cv),
which is defined as the ratio between the standard deviation
and the mean, that is, Cv = σ

μ [5].
In general, if a given Cv < 1, the variation is considered

to be relatively low, whereas a Cv ≥ 1 is indicative of a
relatively high variation.

Table III
Cv TOTALS OVER ALL METRICS

Cv ≥ 1 1 > Cv ≥ 0.9 0.9 > Cv

9 7 209

In the entirety of Appendix B, 225 individual metrics are
presented, each with a respective μ and σ. The above table
shows the total number of metrics for which the variation (i.e.
the Cv) is high (> 1), close to high (≥ 0.9) and low (< 0.9).
As can be seen, the majority of the metrics have what can be
considered a low variation, whereas only a small proportion
have a high or close to high variation. As a result, it can be
concluded that the vast majority of the tests can be considered
stable.

VI. IMPROVEMENTS & FUTURE WORK

As well as a number of potential improvements to the
proposed approach, there is also a host of interesting and
thought-provoking further areas that may prove insightful to
further research into. It is important to highlight both these
improvements as well as further questions in order to incite
further probing into these areas.

Firstly, in future work it will be imperative to adapt the
implementation of the system to allow for automated testing
on much larger sets of data, both to improve the reliability
of the results and allow for meaningful comparison to other
related works - for example, the MAPS dataset [4] which
is used by multiple approaches, including an implementation
based on an end-to-end neural network [13]. Moreover, testing
should be extended to a wider variety of instruments to ensure
that the approach is robust.

Currently the ‘Notes Reduce’ function only accounts for
instruments for which the amplitude of the (n+1)th harmonic
has an amplitude that is strictly less than that of the nth

harmonic. As this is not the case for all instruments (with
one notable counterexample being the trumpet), the current
approach certainly makes mistakes with these instruments.
Moreover, it would be interesting to implement a tolerance to
the ‘Notes Reduce’ function whereby the harmonics need not
be strictly monotonically decreasing but instead within some
range (both up or down) from the amplitude of the previous
harmonic.

As well as this, it may be possible to analyse patterns
in the harmonic spectra of various acoustic instruments and
then utilise this knowledge to ascertain what instruments are
present in a given signal, or at least deduce a probabilistic
model of the likely combinations of instruments. This could
further be used to adapt the algorithm on the fly to change
aspects such as the α value and ‘Notes Reduce’ threshold
dependent on the instruments.

Another area of interest would be looking into the pos-
sibility of abusing the properties of stereo recordings in
order to improve the algorithm by modelling the sound as
a three-dimensional representation in which the instruments
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(or sections of instruments) can be separated dependent on
their position in three-dimensional space.

Other factors that affect the algorithm such as noise levels,
microphone type and quality, and room type could also be
experimented with to see if there is a noticeable effect on
the performance of the algorithm. Moreover, it would prove
insightful to ascertain the effects specifically on the optimal
α value and ‘Notes Reduce’ threshold, if any exist.

There are also a few further shortcomings of the current
approach in which specific edge-cases are not accounted for.
Take, for example, the case in which two or more played
notes have a number of overlapping harmonics, but also a
number of higher-frequency non-overlapping harmonics. If
the algorithm completely removes the overlapping harmonics
from the model on the first pass (i.e. on the first funda-
mental), the higher-frequency harmonics will no longer be
monotonically decreasing (and potentially not even within
a threshold-based range) from the previous harmonic and
will therefore remain untouched by the second pass of the
algorithm (i.e. the pass for the second fundamental) and so
on. This case results in a number of false positives as the high-
frequency non-overlapping harmonics are then likely selected
as fundamentals too. One potential solution to this would be
to reduce the harmonics proportionally to the fundamentals
based on the instrument being played (if reproducible patterns
are indeed found in the harmonic spectra) rather than based
solely on the spline method that is currently employed.

VII. CONCLUSION

This paper has outlined an effective method for the pitch
analysis of polyphonic (and monophonic) acoustic musical
signals. The proposed novel algorithmic approach (II) employs
a ‘raking’ algorithm in the frequency domain (following
minimal preprocessing), and if well-implemented, both runs
in real-time with respect to the average time taken for humans
to react to an auditory stimulus, and exhibits very good
performance.

Though there are a number of clear downsides to the
approach, they can likely be rectified through further research
and the suggested extensions (VI). Despite these, however,
the obtained results from the approach are positive, and
given more rigorous testing on a communal dataset such as
the MAPS dataset, it would certainly be insightful to make
quantitative comparisons to the approaches outlined in the
related work (I) amongst others. Moreover, by automating
testing over larger sets of data, the accuracy and reliability
of the results will be increased.

In conclusion, though improvements can be made to the
algorithm, the research presented in this report provides a solid
basis for further insightful investigation into the area, as well
as a different viewpoint on the analysis of musical signals
as a whole. Furthermore, it is certainly a step forward in the
finding of a solution to this as of yet unsolved problem in
computer science.
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[2] A. De Cheveigné and H. Kawahara. Yin, a fundamental
frequency estimator for speech and music. The Journal
of the Acoustical Society of America, 111(4):1917–1930,
2002.

[3] P. De La Cuadra, A. S. Master, and C. Sapp. Efficient
pitch detection techniques for interactive music. In
ICMC, 2001.

[4] V. Emiya, R. Badeau, and B. David. Multipitch estima-
tion of piano sounds using a new probabilistic spectral
smoothness principle. IEEE Transactions on Audio,
Speech, and Language Processing, 18(6):1643–1654,
2010.

[5] B. Everitt. The Cambridge dictionary of statistics / B.S.
Everitt. Cambridge University Press Cambridge, U.K. ;
New York, 2nd ed. edition, 2002.

[6] T. Fawcett. An introduction to roc analysis. Pattern
recognition letters, 27(8):861–874, 2006.

[7] Y. Li and D. Wang. Pitch detection in polyphonic music
using instrument tone models. In 2007 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing - ICASSP ’07, volume 2, pages II–481–II–
484, April 2007.

[8] I. M. Library. Nocturne in c-sharp minor, b.49 (chopin,
frédéric). [Online; accessed August 11, 2018].

[9] P. McLeod. Fast, accurate pitch detection tools for music
analysis. Academisch proefschrift, University of Otago.
Department of Computer Science, 2009.

[10] M. A. Noll. Pitch determination of human speech by the
harmonic product spectrum, the harmonic sum spectrum,
and a maximum likelihood estimate. In Symposium on
Computer Processing in Communication, ed., volume 19,
pages 779–797. University of Brooklyn Press, New York,
1969.

[11] X. Rodet and B. Doval. Fundamental frequency estima-
tion using a new harmonic matching method. In Pro-
ceedings of the International Computer Music Confer-
ence, pages 555–555. INTERNATIONAL COMPUTER
MUSIC ACCOCIATION, 1991.

[12] J. Shelton and G. P. Kumar. Comparison between
auditory and visual simple reaction times. Neuroscience
& Medicine, 1(1):30–32, 2010.

[13] S. Sigtia, E. Benetos, and S. Dixon. An end-to-end
neural network for polyphonic piano music transcrip-
tion. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 24(5):927–939, May 2016.

APPENDICES

For the sake of brevity, the appendices can be found at both
http://tomg.io/isspit-1-appendices.pdf and https://cs.bham.ac.
uk/∼txg523/isspit-1-appendices.pdf.
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